

LA-UR-15-20565

Approved for public release; distribution is unlimited.

Title: Sign problem in Z-coefficient for particle emission angular

distributions

Author(s): Kawano, Toshihiko

Intended for: communication with scientists outsides LANL

Issued: 2015-01-29

Sign problem in ${\mathbb Z}$ -coefficient for particle emission angular distributions

T. Kawano*

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA (Dated: January 28, 2015)

 $^{^*~}kawano@lanl.gov\\$

There are two definitions of Blatt-Biedenhan's Z-coefficient, the one in the original paper [1]

$$Z(l_1j_1l_2j_2; sL) = i^{-l_1+l_2+L}\hat{l}_1\hat{l}_2\hat{j}_1\hat{j}_2\langle l_1l_200|L0\rangle W(l_1j_1l_2j_2; sL), \tag{1}$$

and another one by Lane and Thomas [2]

$$\overline{Z}(l_1 j_1 l_2 j_2; sL) = \hat{l}_1 \hat{l}_2 \hat{j}_1 \hat{j}_2 \langle l_1 l_2 00 | L0 \rangle W(l_1 j_1 l_2 j_2; sL), \tag{2}$$

where the difference is the phase factor $i^{-l_1+l_2+L}$. We follow the notation by Lane and Thomas.

The angular distribution of shape elastic scattering (for neutrons) is given by the scattering amplitudes $A(\theta)$ and $B(\theta)$ at a given center-of-mass angle θ ;

$$A(\theta) = \frac{i}{2k} \sum_{l} \left\{ (l+1)(1 - S_{l,l+1/2}) + l(1 - S_{l,l-1/2}) \right\} P_l(\cos \theta), \tag{3}$$

$$B(\theta) = \frac{1}{2k} \sum_{l} \left\{ S_{l,l-1/2} - S_{l,l+1/2} \right\} P_l^1(\cos \theta), \tag{4}$$

$$\left(\frac{d\sigma}{d\Omega}\right)^{\text{SE}} = |A(\theta)|^2 + |B(\theta)|^2,\tag{5}$$

where S_{lj} is the optical model S-matrix element, $P_l(\cos \theta)$ is the Legendre function, and $P_l^1(\cos \theta)$ is the associated Legendre function. The same angular distribution can be expanded by the Legendre function as

$$\left(\frac{d\sigma}{d\Omega}\right)^{SE} = \sum_{L} B_L P_L(\cos\theta),\tag{6}$$

and the coefficients are given as

$$B_L = \frac{1}{8k^2} \sum_{l_1 j_1 l_2 j_2} \left[\overline{Z}(l_1 j_1 l_2 j_2; \frac{1}{2} L) \right]^2 \Re \left\{ (1 - S_{l_1 j_1}) (1 - S_{l_2 j_2})^* \right\}.$$
 (7)

This expression is independent of the target spin I_A . Since the \overline{Z} -coefficient is squared, the phase facotr of $Z(l_1j_1l_2j_2;1/2L)$ does not matter. In this expansion, $4\pi B_0$ is equal to the angle-integrated elastic scattering cross section. To confirm the equality of Eq. (5) and Eq. (6) we calculated the shape elastic scattering angular distribution for 152 Gd at 20 MeV, with both equations, shown in Fig. 1. Koning-Delaroche global optical potential was used.

The differential cross section for the compound reaction is written in the same way as the shape elastic scattering;

$$\left(\frac{d\sigma}{d\Omega}\right)_{ab} = \sum_{L} B_L P_L(\cos\theta_b),\tag{8}$$

in which a particle a with the spin i_a collides with the targe nucleus A with the spin I_A , forming a compound state J, then decays into a channel where a particle b with the spin i_b is emitted leaving the residual nucleus B with the spin I_B . Parity is not written explicitly, but it must be conserved at each spin coupling.

The B_L coefficient is given by Moldauer's statistical theory as

$$B_L = \frac{1}{4k^2} \frac{(-)^{I_B - I_A + i_b - i_a}}{(2i_a + 1)(2I_A + 1)} \frac{1}{N} \sum_J (2J + 1)^2 \sum_{l_a j_a} \sum_{l_b j_b} W_{ab} \left\{ X_{l_a j_a}(E_a) X_{l_b j_b}(E_b) + \delta_{I_A I_B} \delta_{E_a E_b} Y_{l_a j_a, l_b j_b}(E_a, E_b) \right\}, \quad (9)$$

where W_{ab} is the width fluctuation factor, and

$$X_{li}(E) = \overline{Z}(ljlj; iL)W(jJjJ; IL)T_{li}(E), \tag{10}$$

$$Y_{l_a j_a, l_b j_b}(E_a, E_b) = (1 - \delta_{l_a l_b})(1 - \delta_{j_a j_b}) \left\{ \overline{Z}(l_a j_a l_b j_b; i_a L) W(J j_a J j_b; I_A L) \right\}^2 T_{l_a j_a}(E_a) T_{l_b j_b}(E_b)$$
(11)

and the normalization N is given by integrating/summing all possible decay channels.

$$N = \sum \int T_{lj}(E)dE. \tag{12}$$

For the Hauser-Feshbach theory, $W_{ab} = 1$ and $Y_{l_aj_a,l_bj_b}(E_a,E_b) = 0$.

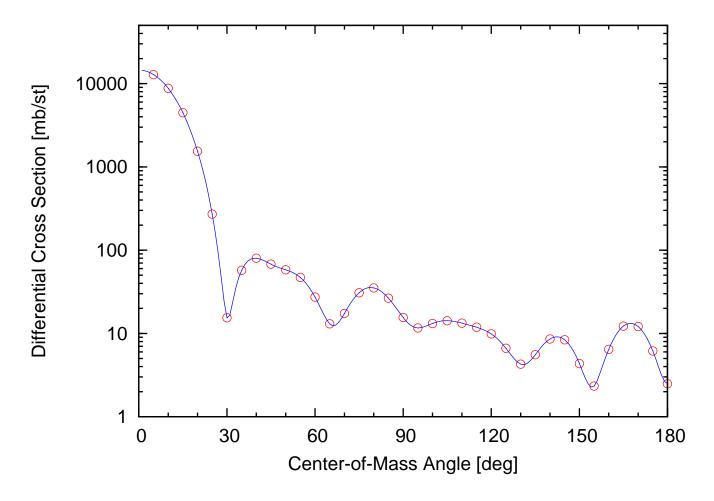


FIG. 1. Calculated shape elastic scattering angular distribution of $^{152}\mathrm{Gd}$ at 20 MeV. The symbols are from the scattering amplitudes at each angle, and the curve is from the Legendre coefficients.

The term that includes $X_{l_aj_a}(E_a)X_{l_bj_b}(E_b)$ has the factor of $\overline{Z}(l_aj_al_aj_a;i_aL)\overline{Z}(l_bj_bl_bj_b;i_bL)$. When the Z-coefficients are given by the original definition,

$$Z(l_{a}j_{a}l_{a}j_{a}; i_{a}L)Z(l_{b}j_{b}l_{b}j_{b}; i_{b}L) = i^{2L}(2l_{a}+1)(2j_{a}+1)(2l_{b}+1)(2j_{b}+1)$$

$$\times \langle l_{a}l_{a}00|L0\rangle\langle l_{b}l_{b}00|L0\rangle$$

$$\times W(l_{a}j_{a}l_{a}j_{a}; i_{a}L)W(l_{b}j_{b}l_{b}j_{b}; i_{b}L).$$
(13)

Since L is always even for the compound reaction, i^{2L} becomes just one. Therefore the Legendre coefficient B_L will be identical for the both definition, Z and \overline{Z} (note that Z-coefficient in Y is squared). As an example, the neutron elastic scattering angular distributions for 2-MeV neutron induced reaction on 58 Ni are shown in Fig. 2, where the compound elastic scattering is 90-degree symmetric by definition.

^[1] J.M. Blatt, L.C. Biedenharn, Rev Mod Phys. 24, 258 (1952).

^[2] A. M. Lane, R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).

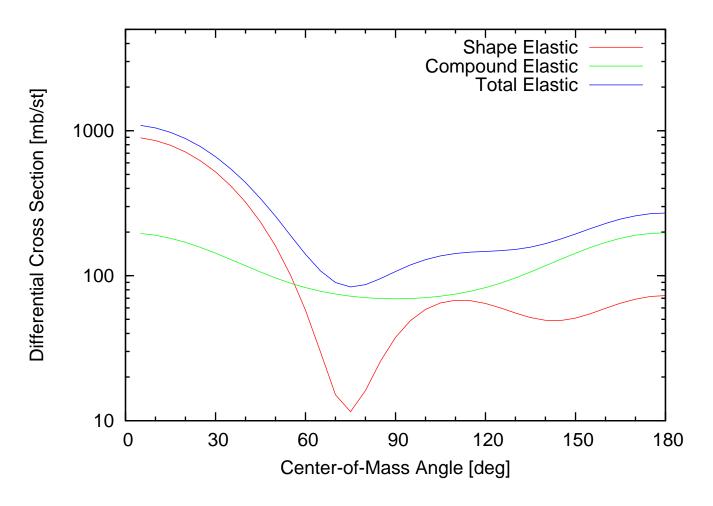


FIG. 2. Calculated shape and compound elastic scattering angular distributions for ⁵⁸Ni at 2 MeV.